862 Chapter 19. Partial Differential Equations

standard tridiagonal algorithm. Givenu™, onesolves (19.5.36) for u™+1/2, substitutes
on the right-hand side of (19.5.37), and then solves for u™t!. The key question
is how to choose the iteration parameter r, the analog of a choice of timestep for
an initial value problem.

As usual, the goal is to minimize the spectral radius of the iteration matrix.
Although it is beyond our scope to go into details here, it turns out that, for the
optimal choice of r, the ADI method has the same rate of convergence as SOR.
The individual iteration steps in the ADI method are much more complicated than
in SOR, so the ADI method would appear to be inferior. Thisis in fact true if we
choose the same parameter r for every iteration step. However, it is possible to
choose a different r for each step. If thisis done optimally, then ADI is generally
more efficient than SOR. We refer you to the literature [1-4] for details.

Our reason for not fully implementing ADI here is that, in most applications,
it has been superseded by the multigrid methods described in the next section. Our
advice is to use SOR for trivial problems (e.g., 20 x 20), or for solving a larger
problem once only, where ease of programming outweighs expense of computer
time. Occasionally, the sparse matrix methods of §2.7 are useful for solving a set
of difference equations directly. For production solution of large elliptic problems,
however, multigrid is now almost always the method of choice.

CITED REFERENCES AND FURTHER READING:

Hockney, R.W., and Eastwood, J.W. 1981, Computer Simulation Using Particles (New York:
McGraw-Hill), Chapter 6.

Young, D.M. 1971, Iterative Solution of Large Linear Systems (New York: Academic Press). [1]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§68.3-8.6. [2]

Varga, R.S. 1962, Matrix Iterative Analysis (Englewood Cliffs, NJ: Prentice-Hall). [3]

Spanier, J. 1967, in Mathematical Methods for Digital Computers, Volume 2 (New York: Wiley),
Chapter 11. [4]

19.6 Multigrid Methods for Boundary Value
Problems

Practical multigrid methodswerefirst introduced in the 1970s by Brandt. These
methods can solve elliptic PDEs discretized on N grid pointsin O(/N') operations.
The “rapid” direct elliptic solvers discussed in §19.4 solve special kinds of elliptic
equationsin O(N log N') operations. The numerical coefficients in these estimates
are such that multigrid methods are comparable to the rapid methods in execution
speed. Unlike the rapid methods, however, the multigrid methods can solve general
eliptic equations with nonconstant coefficients with hardly any loss in efficiency.
Even nonlinear equations can be solved with comparable speed.

Unfortunately there is not a single multigrid algorithm that solves al elliptic
problems. Rather there is a multigrid technique that provides the framework for
solving these problems. You have to adjust the various components of the algorithm
within this framework to solve your specific problem. We can only give a brief

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

19.6 Multigrid Methods for Boundary Value Problems 863

introduction to the subject here. In particular, we will give two sample multigrid
routines, one linear and one nonlinear. By following these prototypes and by
perusing the references [1-4], you should be able to develop routines to solve your
own problems.

Therearetwo related, but distinct, approachesto the use of multigrid techniques.
Thefirst, termed “the multigrid method,” is ameansfor speeding up the convergence
of a traditional relaxation method, as defined by you on a grid of pre-specified
fineness. In this case, you need define your problem (e.g., evaluate its source terms)
only on this grid. Other, coarser, grids defined by the method can be viewed as
temporary computational adjuncts.

The second approach, termed (perhaps confusingly) “the full multigrid (FMG)
method,” requires you to be able to define your problem on grids of various sizes
(generally by discretizing the same underlying PDE into different-sized sets of finite-
difference equations). In this approach, the method obtains successive solutions on
finer and finer grids. You can stop the solution either at a pre-specified fineness, or
you can monitor the truncation error due to the discretization, quitting only when
it is tolerably small.

Inthissection wewill first discussthe “ multigrid method,” then use the concepts
developed to introduce the FMG method. The latter algorithm is the one that we
implement in the accompanying programs.

From One-Grid, through Two-Grid, to Multigrid

The key idea of the multigrid method can be understood by considering the
simplest case of a two-grid method. Suppose we are trying to solve the linear
eliptic problem

Lu=f (19.6.1)

where £ issomelinear elliptic operator and f is the sourceterm. Discretize equation
(19.6.1) on a uniform grid with mesh size h. Write the resulting set of linear
algebraic equations as

Lpup, = fn (19.6.2)

Let u;, denote some approximate solution to equation (19.6.2). We will use the
symbol w;, to denote the exact solution to the difference equations (19.6.2). Then
the error in u; or the correction is

Vp = Up — ’ljh (1963)
The residual or defect is
dn = Lpup — fn (19.6.4)

(Beware: some authors define residual as minusthe defect, and there is not universal
agreement about which of these two quantities 19.6.4 defines.) Since £, is linear,
the error satisfies

Eh’l}h = —dh (19.6.5)

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

864 Chapter 19. Partial Differential Equations

At this point we need to make an approximation to £, in order to find v;,. The
classical iteration methods, such as Jacobi or Gauss-Seidel, do this by finding, at
each stage, an approximate solution of the equation

Loy = —dy, (19.6.6)

where L, is a“simpler” operator than £;,. For example, Ly, isthe diagonal part of
Ly, for Jacobi iteration, or the lower triangle for Gauss-Seidel iteration. The next
approximation is generated by

WY = T, + D (19.6.7)

Now consider, as an aternative, a completely different type of approximation
for Ly, one in which we “coarsify” rather than “simplify.” That is, we form some
appropriate approximation £ g of £; on acoarser grid with mesh size H (we will
alwaystake H = 2h, but other choices are possible). The residual equation (19.6.5)
is now approximated by

EHUH = —dH (1968)

Since L has smaller dimension, this equation will be easier to solve than equation
(19.6.5). To define the defect d ; on the coarse grid, we need a restriction operator
R that restricts d;, to the coarse grid:

dy = Rdy, (19.6.9)

The restriction operator is also caled the fine-to-coarse operator or the injection
operator. Once we have a solution vy to equation (19.6.8), we need a prolongation
operator P that prolongates or interpolates the correction to the fine grid:

T = Py (19.6.10)

The prolongation operator is also called the coarse-to-fine operator or the inter-
polation operator. Both R and P are chosen to be linear operators. Finaly the
approximation wu; can be updated:

ne

wp®™ = up + v, (19.6.11)
One step of this coarse-grid correction scheme is thus:

Coarse-Grid Correction

Compute the defect on the fine grid from (19.6.4).

Restrict the defect by (19.6.9).

Solve (19.6.8) exactly on the coarse grid for the correction.
Interpolate the correction to the fine grid by (19.6.10).

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

19.6 Multigrid Methods for Boundary Value Problems 865

e Compute the next approximation by (19.6.11).

L et’scontrast the advantages and di sadvantages of relaxationand the coarse-grid
correctionscheme. Consider theerror v, expandedinto adiscrete Fourier series. Call
the componentsin the lower half of the frequency spectrum the smooth components
and the high-frequency components the nonsmooth components. We have seen that
relaxation becomes very slowly convergentin thelimit » — 0, i.e.,, whentherearea
large number of mesh points. The reason turns out to be that the smooth components
are only dlightly reduced in amplitude on each iteration. However, many relaxation
methods reduce the amplitude of the nonsmooth components by large factors on
each iteration: They are good smoothing operators.

For the two-grid iteration, on the other hand, components of the error with
wavelengths < 2H are not even representable on the coarse grid and so cannot be
reduced to zero on this grid. But it is exactly these high-frequency components that
can be reduced by relaxation on the fine grid! This leads us to combine the ideas
of relaxation and coarse-grid correction:

Two-Grid lteration

e Pre-smoothing: Compute u;, by applying v1 > 0 steps of a relaxation
method to wuy,.

o Coarse-grid correction: As above, using @, to give aj°v.

o Post-smoothing: Computew ;™ by applying v, > 0 steps of the relaxation
method to aj°v.

It is only a short step from the above two-grid method to a multigrid method.
Instead of solving the coarse-grid defect equation (19.6.8) exactly, we can get an
approximate solution of it by introducing an even coarser grid and using the two-grid
iteration method. If the convergence factor of the two-grid method is small enough,
we will need only a few steps of this iteration to get a good enough approximate
solution. We denote the number of such iterations by ~. Obviously we can apply
this idea recursively down to some coarsest grid. There the solution is found
easily, for example by direct matrix inversion or by iterating the relaxation scheme
to convergence.

Oneiteration of a multigrid method, from finest grid to coarser grids and back
to finest grid again, is called a cycle. The exact structure of a cycle depends on the
value of ~, the number of two-grid iterations at each intermediate stage. The case
~ = liscaledaV-cycle whiley = 2 iscalled aW-cycle (see Figure 19.6.1). These
are the most important cases in practice.

Note that once more than two grids are involved, the pre-smoothing steps after
the first one on the finest grid need an initial approximation for the error v. This
should be taken to be zero.

Smoothing, Restriction, and Prolongation Operators

The most popular smoothing method, and the one you should try first, is
Gauss-Seidel, sinceit usually leadsto agood convergencerate. If we order the mesh
points from 1 to IV, then the Gauss-Seidel scheme is

N
ui:_(ZLijuj_fi)% i=1,...,N (19.6.12)
= 1

Jj#i

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

866 Chapter 19. Partial Differential Equations

s
2-grid

y=1

Figure 19.6.1. Structure of multigrid cycles. S denotes smoothing, while E denotes exact solution
on the coarsest grid. Each descending line \ denotes restriction (R) and each ascending line / denotes
prolongation (7). The finest grid is at the top level of each diagram. For the V-cycles (y = 1) the E
step is replaced by one 2-grid iteration each time the number of grid levels is increased by one. For the
W-cycles (y = 2), each E step gets replaced by two 2-grid iterations.

where new values of v are used on the right-hand side as they become available. The
exact form of the Gauss-Seidel method depends on the ordering chosen for the mesh
points. For typical second-order elliptic equations like our model problem equation
(19.0.3), as differenced in equation (19.0.8), it is usualy best to use red-black
ordering, making one pass through the mesh updating the “ even” points (like the red
squares of a checkerboard) and another pass updating the “odd” points (the black
squares). When quantities are more strongly coupled along one dimension than
another, one should relax a whole line along that dimension simultaneously. Line
relaxation for nearest-neighbor coupling involves solving a tridiagona system, and
sois till efficient. Relaxing odd and even lines on successive passes is called zebra
relaxation and is usually preferred over simple line relaxation.

Note that SOR should not be used as a smoothing operator. The overrelaxation
destroys the high-frequency smoothing that is so crucial for the multigrid method.

A succint notation for the prolongation and restriction operatorsisto give their
symbol. The symbol of P isfound by considering v i to be 1 a some mesh point
(z,y), zero elsewhere, and then asking for the values of Pv . The most popular
prolongation operator is simple bilinear interpolation. It gives honzero values at the

9 points (z,y), (z + h,y),...,(x — h,y — h), where the values are 1, 1, ..., 1.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

19.6 Multigrid Methods for Boundary Value Problems 867

Its symbol is therefore

(19.6.13)

L Ll S L B
NI
L Ll S L B

The symbol of R is defined by considering v, to be defined everywhere on the
fine grid, and then asking what is Rvy, a (z,y) as alinear combination of these
values. Thesimplest possible choicefor R is straight injection, which means simply
filling each coarse-grid point with the value from the corresponding fine-grid point.
Its symbal is “[1].” However, difficulties can arise in practice with this choice. It
turns out that a safe choicefor R isto makeit the adjoint operator to P. To definethe
adjoint, define the scalar product of two grid functions 5, and v, for mesh size h as

(up|vp)p = b2 Z up(z,y)vp(z,y) (19.6.14)

z,y

Then the adjoint of P, denoted P, is defined by
(uar|PTon) i = (Pup|vn)n (19.6.15)

Now take P to bebilinear interpolation, and choosew iy = 1 at (z, y), zero elsewhere.
Set Pt = R in (19.6.15) and H = 2h. You will find that

(Ron)(@,y) = $vn(@,y) + gon(z + h,y) + f5vn(@ 4+ h,y + h) + -+ (19.6.16)

so that the symbol of R is

(19.6.17)

;|,_. o]~ ;l,_.
’5;|>—l oo ;lH

[N e [

Note the simple rule: The symbol of R is i the transpose of the matrix defining the
symbol of P, equation (19.6.13). Thisruleisgeneral whenever R = P and H = 2h.

Theparticular choiceof R in (19.6.17) iscalled full weighting. Another popular
choice for R is half weighting, “halfway” between full weighting and straight
injection. Its symbol is

(19.6.18)

0| N[0ol
O o= O

O o= O

A similar notation can be used to describe the difference operator £;,. For
example, the standard differencing of the model problem, equation (19.0.6), is
represented by the five-point difference star

10
Ln=—|1 -4 1 (19.6.19)
10

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

868 Chapter 19. Partial Differential Equations

If you are confronted with a new problem and you are not sure what P and R
choices are likely to work well, here is a safe rule: Suppose m,, is the order of the
interpolation P (i.e., it interpolates polynomials of degreem , — 1 exactly). Suppose
m,- isthe order of R, and that R is the adjoint of some P (not necessarily the P you
intend to use). Then if m is the order of the differential operator £ ;,, you should
satisfy the inequality m, + m, > m. For example, bilinear interpolation and its
adjoint, full weighting, for Poisson’s equation satisfy m, + m, =4 > m = 2.

Of course the P and R operators should enforce the boundary conditions for
your problem. The easiest way to do this is to rewrite the difference equation to
have homogeneous boundary conditions by modifying the source term if necessary
(cf. §19.4). Enforcing homogeneous boundary conditions simply requires the P
operator to produce zeros at the appropriate boundary points. The corresponding
R is then found by R = PT.

Full Multigrid Algorithm

So far we have described multigrid as an iterative scheme, where one starts
with some initial guess on the finest grid and carries out enough cycles (V-cycles,
W-cycles,. . .) to achieve convergence. This is the simplest way to use multigrid:
Simply apply enough cycles until some appropriate convergence criterion is met.
However, efficiency can be improved by using the Full Multigrid Algorithm (FMG),
also known as nested iteration.

Instead of starting with an arbitrary approximation on the finest grid (e.g.,
up, = 0), the first approximation is obtained by interpolating from a coarse-grid
solution:

up = Pugy (19.6.20)

The coarse-grid solution itself is found by a similar FMG process from even coarser
grids. At the coarsest level, you start with the exact solution. Rather than proceed as
in Figure 19.6.1, then, FM G getsto its solution by a series of increasingly tall “N’s;”
each taller one probing a finer grid (see Figure 19.6.2).

Note that P in (19.6.20) need not be the same P used in the multigrid cycles.
It should be at least of the same order as the discretization £}, but sometimes a
higher-order operator leads to greater efficiency.

It turns out that you usually need one or at most two multigrid cycles at each
level before proceeding down to the next finer grid. While there is theoretica
guidance on the required number of cycles (e.g., [2]), you can easily determine it
empirically. Fix the finest level and study the solution values as you increase the
number of cyclesper level. The asymptotic value of the solution isthe exact solution
of the difference equations. The difference between this exact solution and the
solution for a small number of cycles is the iteration error. Now fix the number of
cyclesto belarge, and vary the number of levels, i.e., the smallest value of h used. In
thisway you can estimate the truncation error for agiven h. Inyour final production
code, there is no point in using more cycles than you need to get the iteration error
down to the size of the truncation error.

The simple multigrid iteration (cycle) needs the right-hand side f only at the
finest level. FMG needs f at al levels. If the boundary conditions are homogeneous,

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

19.6 Multigrid Methods for Boundary Value Problems 869

4-grid
ncycle=2

Figure 19.6.2. Structure of cycles for the full multigrid (FMG) method. This method starts on the
coarsest grid, interpolates, and then refines (by “V’s"), the solution onto grids of increasing fineness.

you can use fg = Rfx. This prescription is not always safe for inhomogeneous
boundary conditions. In that case it is better to discretize f on each coarse grid.

Notethat the FM G a gorithm producesthe solution on al levels. It cantherefore
be combined with techniques like Richardson extrapolation.

We now give a routine mglin that implements the Full Multigrid Algorithm
for a linear equation, the model problem (19.0.6). It uses red-black Gauss-Seidel
as the smoothing operator, bilinear interpolation for P, and half-weighting for R.
To change the routine to handle another linear problem, all you need do is modify
the subroutines relax, resid, and slvsml appropriately. A feature of the routine
is the dynamical allocation of storage for variables defined on the various grids.
The subroutine maloc emulates the C function malloc. It alows you to write
subroutines that operate on two-dimensional arrays in the usual way, but to allocate
storage for these arrays in the calling program “on the fly” out of a single long
one-dimensional array.

SUBROUTINE mglin(u,n,ncycle)

INTEGER n,ncycle,NPRE,NPOST,NG,MEMLEN

DOUBLE PRECISION u(n,n)

PARAMETER (NG=5,MEMLEN=13#2%* (2+NG) /3+14%2**NG+8*NG-100/3)

PARAMETER (NPRE=1,NPOST=1)

USES addi nt, copy, fillO,interp, mal oc, rel ax, resid, rstrct, sl vsm
Full Multigrid Algorithm for solution of linear elliptic equation, here the model problem
(19.0.6). On input u(1:n,1:n) contains the right-hand side p, while on output it returns
the solution. The dimension n is related to the number of grid levels used in the solution,
NG below, by n = 2**NG + 1. ncycle is the number of V-cycles to be used at each level.
Parameters: NG is the number of grid levels used; MEMLEN is the maximum amount of
memory that can be allocated by calls to maloc; NPRE and NPOST are the number of
relaxation sweeps before and after the coarse-grid correction is computed.

INTEGER j,jcycle,jj,jpost,jpre,mem,nf ,ngrid,nn,ires(NG),

irho(NG) ,irhs (NG) ,iu(NG) ,maloc
DOUBLE PRECISION z

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

870 Chapter 19.

Partial Differential Equations

COMMON /memory/ z(MEMLEN) ,mem
mem=0
nn=n/2+1
ngrid=NG-1
irho(ngrid)=maloc (nn**2)
call rstrct(z(irho(ngrid)),u,nn)
if (nn.gt.3) then
nn=nn/2+1
ngrid=ngrid-1
irho(ngrid)=maloc(nn**2)

Storage for grid functions is allocated by maloc
from array z.

Allocate storage for r.h.s. on grid NG — 1,

and fill it by restricting from the fine grid.

Similarly allocate storage and fill r.h.s. on all
coarse grids.

call rstrct(z(irho(ngrid)),z(irho(ngrid+1)) ,nn)

goto 1
endif
nn=3
iu(1)=maloc (nn**2)
irhs(1)=maloc(nn**2)
call slvsml(z(iu(1)),z(irho(1)))
ngrid=NG
do 16 j=2,ngrid
nn=2*nn-1
iu(j)=maloc(nn**2)
irhs(j)=maloc(nn**2)
ires(j)=maloc (nn**2)
call interp(z(iu(j)),z(iu(j-1)),nn)
if (j.ne.ngrid) then

call copy(z(irhs(j)),z(irho(j)) ,nn)

else
call copy(z(irhs(j)),u,nn)
endif
do 15 jcycle=1,ncycle
nf=nn
dow2 jj=j,2,-1
do 1 jpre=1,NPRE

Initial solution on coarsest grid.

Nested iteration loop.

Interpolate from coarse grid to next finer grid.

Set up r.h.s.

V-cycle loop.

Downward stoke of the V.
Pre-smoothing.

call relax(z(iu(jj)),z(irhs(jj)) ,nf)

enddo 11

call resid(z(ires(jj)),z(iu(jj)),z(irhs(jj)) ,nf)

nf=nf/2+1

call rstrct(z(irhs(jj-1)),z(ires(jj)),nf)
Restriction of the residual is the next r.h.s.

call £il10(z(iu(jj-1)),nf)
enddo 12
call slvsml(z(iu(1)),z(irhs(1)))
nf=3
dou jj=2,j

nf=2*nf-1

Zero for initial guess in next relaxation.
Bottom of V: solve on coarsest grid.

Upward stroke of V.

call addint(z(iu(jj)),z(iu(jj-1)),z(ires(jj)) ,nf)
Use res for temporary storage inside addint.
do 13 jpost=1,NPOST Post-smoothing.
call relax(z(iu(jj)),z(irhs(jj)),nf)

enddo 13
enddo 14
enddo 15
enddo 16
call copy(u,z(iu(ngrid)),n)
return
END

SUBROUTINE rstrct(uc,uf,nc)
INTEGER nc

Return solution in u.

DOUBLE PRECISION uc(nc,nc),uf(2*nc-1,2%nc-1)
Half-weighting restriction. nc is the coarse-grid dimension. The fine-grid solution is input
in uf (1:2*nc-1,1:2*nc-1), the coarse-grid solution is returned in uc(1:nc,1:nc).

INTEGER ic,if,jc,jf

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

19.6 Multigrid Methods for Boundary Value Problems 871

do 12 jc=2,nc-1 Interior points.
jE=2%jc-1
do 11 ic=2,nc-1
if=2xic-1
uc(ic,jc)=.5d0%uf (if,jf)+.125d0* (uf (if+1,jf)+
uf (if-1,j£)+uf (if, jE+1)+uf (if,j£-1))
enddo 11
enddo 12
do 13 ic=1,nc Boundary points.
uc(ic,1)=uf (2*ic-1,1)
uc(ic,nc)=uf (2*ic-1,2*nc-1)
enddo 13
do 14 jc=1,nc
uc(l,je)=uf (1,2*%jc-1)
uc(nc, jc)=uf (2*nc-1,2%jc-1)
enddo 14
return
END

SUBROUTINE interp(uf,uc,nf)
INTEGER nf
DOUBLE PRECISION uc(nf/2+1,nf/2+1),uf(nf,nf)
INTEGER ic,if,jc,jf,nc
Coarse-to-fine prolongation by bilinear interpolation. nf is the fine-grid dimension. The
coarse-grid solution is input as uc(l:nc,1:nc), where nc = nf/2 + 1. The fine-grid
solution is returned in uf (1:nf,1:nf).
nc=nf/2+1
do 12 je=1,nc Do elements that are copies.
jE=2%jc-1
do 11 ic=1,nc
uf (2*ic-1, jf)=uc(ic,jc)

enddo 11
enddo 12
do 14 jf=1,nf,2 Do odd-numbered columns, interpolating ver-
do13 if=2,nf-1,2 tically.
uf (if, jf)=.5d0%* (uf (if+1,jf)+uf (if-1,jf))
enddo 13
enddo 14
do 16 jf=2,nf-1,2 Do even-numbered columns, interpolating hor-
do 15 if=1,nf izontally.
uf (if,j£)=.5d0* (uf (if,jf+1)+uf (if,jf-1))
enddo 15
enddo 16
return

END

SUBROUTINE addint (uf,uc,res,nf)
INTEGER nf
DOUBLE PRECISION res(nf,nf),uc(nf/2+1,nf/2+1) ,uf (nf,nf)
USES interp
Does coarse-to-fine interpolation and adds result to uf. nf is the fine-grid dimension. The
coarse-grid solution is input as uc(l:nc,1:nc), where nc = nf/2 + 1. The fine-grid
solution is returned in uf (1:nf,1:nf). res(1:nf,1:nf) is used for temporary storage.
INTEGER i, j
call interp(res,uc,nf)
do 12 j=1,nf
don i=1,nf
uf (i,j)=uf(i,jd)+res(i,j)
enddo 11
enddo 12
return
END

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

872 Chapter 19. Partial Differential Equations

SUBROUTINE slvsml(u,rhs)

DOUBLE PRECISION rhs(3,3),u(3,3)

USES fillo
Solution of the model problem on the coarsest grid, where h = % The right-hand side is
input in rhs(1:3,1:3) and the solution is returned in u(1:3,1:3).

DOUBLE PRECISION h

call £i110(u,3)

h=.5d0

u(2,2)=-h*h*rhs(2,2)/4.d0

return

END

SUBROUTINE relax(u,rhs,n)

INTEGER n

DOUBLE PRECISION rhs(n,n),u(n,n)
Red-black Gauss-Seidel relaxation for model problem. The current value of the solution
u(l:n,1:n) is updated, using the right-hand side function rhs(1:n,1:n).

INTEGER i,ipass,isw,j,jsw

DOUBLE PRECISION h,h2

h=1.d0/(n-1)
h2=h*h
jsw=1
do 13 ipass=1,2 Red and black sweeps.
isw=jsw
do1 j=2,n-1
do 11 i=isw+1,n-1,2 Gauss-Seidel formula.

u(i,j)=0.25d0* (u(i+1,j)+u(i-1,j)+u(i,j+1)
+u(i, j-1)-h2*rhs(i,j))
enddo 11
isw=3-isw
enddo 12
jsw=3-jsw
enddo 13
return
END

SUBROUTINE resid(res,u,rhs,n)

INTEGER n

DOUBLE PRECISION res(n,n),rhs(n,n),u(n,n)
Returns minus the residual for the model problem. Input quantities are u(1:n,1:n) and
rhs(1:n,1:n), while res(1:n,1:n) is returned.

INTEGER i, j

DOUBLE PRECISION h,h2i

h=1.d40/(n-1)

h2i=1.d0/ (h*h)

do 12 j=2,n-1 Interior points.
don i=2,n-1

res(i,j)=-h2i*(u(i+l,j)+u(i-1,j)+u(i,j+1)+u(d,j-1)-
4.d0*u(i,j))+rhs(i,j)

enddo 11
enddo 12
do13 i=1,n Boundary points.

res(i,1)=0.d0
res(i,n)=0.d0
res(1,i)=0.d0
res(n,i)=0.d0

enddo 13

return

END

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

19.6 Multigrid Methods for Boundary Value Problems 873

SUBROUTINE copy(aout,ain,n)
INTEGER n
DOUBLE PRECISION ain(n,n),aout(n,n)
Copies ain(1:n,1:n) to aout(1:n,1:n).
INTEGER 1i,j
do12 i=1,n
don j=1,n
aout(j,i)=ain(j,1)
enddo 11
enddo 12
return
END

SUBROUTINE £i110(u,n)

INTEGER n

DOUBLE PRECISION u(n,n)
Fills u(1:n,1:n) with zeros.

INTEGER i, j

do12 j=1,n
don i=1,n

u(i,j)=0.40

enddo 11

enddo 12

return

END

FUNCTION maloc(len)

INTEGER maloc,len,NG,MEMLEN

PARAMETER (NG=5,MEMLEN=13#2%* (2+NG) /3+14%2*xNG+8*NG-100/3) for mglin

PARAMETER (NG=5,MEMLEN=172%% (2%NG) /3+18%2%*NG+10*NG-86/3) for mgfas, N.B.!

INTEGER mem

DOUBLE PRECISION z

COMMON /memory/ z(MEMLEN) ,mem
Dynamical storage allocation. Returns integer pointer to the starting position for len array
elements in the array z. The preceding array element is filled with the value of len, and
the variable mem is updated to point to the last element of z that has been used.

if (mem+len+l.gt.MEMLEN) pause ’insufficient memory in maloc’

z(mem+1)=1len

maloc=mem+2

mem=mem+len+1

return

END

The routine mglin is written for clarity, not maximum efficiency, so that it is
easy to modify. Several simple changes will speed up the execution time:

e Thedefect dj, vanishesidentically at all black mesh pointsafter ared-black
Gauss-Seidel step. Thusdy = Rdy, for half-weighting reduces to simply
copying half the defect from the fine grid to the corresponding coarse-grid
point. The calls to resid followed by rstrct in the first part of the
V-cycle can be replaced by a routine that loops only over the coarse grid,
filling it with half the defect.

o Similarly, the quantity w)°" = w, + Pvy need not be computed at red
mesh points, since they will immediately be redefined in the subsequent
Gauss-Seidel sweep. This means that addint need only loop over black
points.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

874 Chapter 19. Partial Differential Equations

e You can speed up relax in several ways. First, you can have a specia
form when the initial guess is zero, and omit the routine £i110. Next,
you can store h? f;, on the various grids and save amultiplication. Finally,
it is possible to save an addition in the Gauss-Seidel formula by rewriting
it with intermediate variables.

e Ontypica problems, mglin with ncycle = 1 will return a solution with
the iteration error bigger than the truncation error for the given size of h.
To knock the error down to the size of the truncation error, you have to
set ncycle = 2 or, more cheaply, npre = 2. A more efficient way turns
out to be to use a higher-order P in (19.6.20) than the linear interpolation
used in the V-cycle.

Implementing al the above features typically gives up to a factor of two
improvement in execution time and is certainly worthwhile in a production code.

Nonlinear Multigrid: The FAS Algorithm

Now turn to solving a nonlinear elliptic equation, which we write symbolicaly as
L(u) =0 (19.6.21)
Any explicit source term has been moved to the left-hand side. Suppose equation (19.6.21)
is suitably discretized:
Ln(un) =0 (19.6.22)

We will see below that in the multigrid algorithm we will have to consider equations where a
nonzero right-hand side is generated during the course of the solution:

Ln(un) = fn (19.6.23)

Oneway of solving nonlinear problems with multigrid isto use Newton's method, which
produces linear equations for the correction term at each iteration. We can then use linear
multigrid to solve these equations. A great strength of the multigrid idea, however, is that it
can be applied directly to nonlinear problems. All we need is a suitable nonlinear relaxation
method to smooth the errors, plus a procedure for approximating corrections on coarser grids.
This direct approach is Brandt's Full Approximation Storage Algorithm (FAS). No nonlinear
equations need be solved, except perhaps on the coarsest grid.

To develop the nonlinear algorithm, suppose we have a relaxation procedure that can
smooth the residual vector aswe did in the linear case. Then we can seek a smooth correction
vy, to solve (19.6.23):

Ln(un +vn) = fn (19.6.24)
To find v, note that
Ln(un +vn) = Ln(un) = frn — Ln(un)

19.6.25
_ _a, ()

The right-hand side is smooth after a few nonlinear relaxation sweeps. Thus we can transfer
the left-hand side to a coarse grid:

Lu(ug) — La(Rup) = —Rdy, (19.6.26)
that is, we solve
Lu(ur) = La(Run) — Rdp (19.6.27)

on the coarse grid. (Thisis how nonzero right-hand sides appear.) Suppose the approximate
solution is wg. Then the coarse-grid correction is

T =t — Riin (19.6.28)

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

19.6 Multigrid Methods for Boundary Value Problems 875

and
up® = up + P(um — Ran) (19.6.29)

Notethat PR # 1ingenera, so u;,“" # Pug. Thisisakey point: In equation (19.6.29) the
interpolation error comes only from the correction, not from the full solution ;.

Equation (19.6.27) shows that one is solving for the full approximation uz, not just the
error as in the linear agorithm. This is the origin of the name FAS.

The FAS multigrid algorithm thus looks very similar to the linear multigrid algorithm.
The only differences are that both the defect dy, and the relaxed approximation w;, have to
be restricted to the coarse grid, where now it is equation (19.6.27) that is solved by recursive
invocation of the algorithm. However, instead of implementing the algorithm this way, we
will first describe the so-called dual viewpoint, which leads to a powerful alternative way
of looking at the multigrid idea.

The dua viewpoint considers the local truncation error, defined as

T=Ly(u) = fn (19.6.30)
where u is the exact solution of the original continuum equation. If we rewrite this as
Ln(u) = fnt+7 (19.6.31)

we see that 7 can be regarded as the correction to f, so that the solution of the fine-grid
equation will be the exact solution w.

Now consider the relative truncation error 7, which is defined on the H-grid relative
to the h-grid:

Th = EH('RU;L) — 'RC}L(U;L) (19.6.32)
Since Ln(un) = fn, this can be rewritten as
Ly(un) = fu+n (19.6.33)

In other words, we can think of 7, as the correction to fx that makes the solution of the
coarse-grid equation equal to the fine-grid solution. Of course we cannot compute 7,, but we
do have an approximation to it from using u, in equation (19.6.32):

Th X~ %h = EH(R:UV}L) — RC}L(:MV;L) (19634)
Replacing 7, by 7, in equation (19.6.33) gives
[:H(UH) = [:H('Rﬂh) — 'Rdh (19.6.35)

which is just the coarse-grid equation (19.6.27)!
Thus we see that there are two complementary viewpoints for the relation between
coarse and fine grids:

e Coarse grids are used to accelerate the convergence of the smooth components
of the fine-grid residuals.

e Fine grids are used to compute correction terms to the coarse-grid equations,
yielding fine-grid accuracy on the coarse grids.

One benefit of thisnew viewpoint isthat it allows usto derive anatural stopping criterion
for a multigrid iteration. Normally the criterion would be
lldnll <€ (19.6.36)

and the question is how to choose e. There is clearly no benefit in iterating beyond the
point when the remaining error is dominated by the local truncation error 7. The computable
quantity is7,. What is the relation between + and 7, ? For the typical case of a second-order
accurate differencing scheme,

7= Ln(u) — Ln(un) = 27z, y) + - (19.6.37)

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

876 Chapter 19. Partial Differential Equations

Assume the solution satisfies up, = u + h2u2(x,y) + ---. Then, assuming R is of high
enough order that we can neglect its effect, equation (19.6.32) gives

Th ~ Lo (u+ h?us) — Ln(u + h*uz)
= Lu(u) — Ln(u) + h*[L(uz) — Ly (u2)] + - (19.6.38)
= (H? = h®)12 + O(h*)
For the usual case of H = 2h we therefore have

T~

n (19.6.39)

Wl

Th X

W=

The stopping criterion is thus equation (19.6.36) with
€ = al|m], an~ g (19.6.40)

We have one remaining task before implementing our nonlinear multigrid algorithm:
choosing a nonlinear relaxation scheme. Once again, your first choice should probably be
the nonlinear Gauss-Seidel scheme. If the discretized equation (19.6.23) is written with
some choice of ordering as

Li(ui,...,un)=fi, i=1,...,N (19.6.41)

then the nonlinear Gauss-Seidel schemes solves
Li(ut, .o tim1,ug Y Ui, - UN) = fi (19.6.42)
for u;*". Asusual new v’sreplaceold v’sas soon asthey have been computed. Often equation

(19.6.42) islinear inu; %, since the nonlinear terms are discretized by means of its neighbors.
If thisis not the case, we replace equation (19.6.42) by one step of a Newton iteration:

new old L; (U‘(i)ld) — fl
new _ gold - AT J - Jr 19.6.43
Y T T L (Y o, ()

For example, consider the simple nonlinear equation
Viu+u® =p (19.6.44)
In two-dimensional notation, we have

L(wi ;) = (Wigrj +uiz1; +wijar +uijo1 — 4uij)/h> +ui; —pij =0 (19.6.45)

Since
oL 2
= —4/h 2u; 19.6.46
Gu = A/ 2ui, (19.6.46)
the Newton Gauss-Seidel iteration is
new _ L(ui,;)
Ui 5 = UWij — m (19647)

Hereisaroutinemgfas that solves equation (19.6.44) using the Full Multigrid Algorithm
and the FAS scheme. Restriction and prolongation are done asinmglin. We have included
the convergence test based on equation (19.6.40). A successful multigrid solution of aproblem
should aim to satisfy this condition with the maximum number of V-cycles, maxcyc, equal
to 1 or 2. The routine mgfas uses the same subroutines copy, interp, maloc, and rstrct
as mglin, but with a larger storage requirement MEMLEN in maloc (be sure to change the
PARAMETER statement in that routine, as indicated by the commented line).

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

19.6 Multigrid Methods for Boundary Value Problems 877

SUBROUTINE mgfas(u,n,maxcyc)

INTEGER maxcyc,n,NPRE,NPOST,NG,MEMLEN

DOUBLE PRECISION u(n,n),ALPHA

PARAMETER (NG=5,MEMLEN=17*2%* (2*NG) /3+18*2**NG+10*NG-86/3)

PARAMETER (NPRE=1,NPOST=1,ALPHA=.33d0)

USES anor ng, copy, i nterp, | op, nal oc, mat add, mat sub, rel ax2, rstrct, sl vsn2

Full Multigrid Algorithm for FAS solution of nonlinear elliptic equation, here equation
(19.6.44). On input u(1:n,1:n) contains the right-hand side p, while on output it re-
turns the solution. The dimension n is related to the number of grid levels used in the
solution, NG below, by n = 2**NG + 1. maxcyc is the maximum number of V-cycles to
be used at each level.
Parameters: NG is the number of grid levels used; MEMLEN is the maximum amount of
memory that can be allocated by calls to maloc; NPRE and NPOST are the number of
relaxation sweeps before and after the coarse-grid correction is computed; ALPHA relates
the estimated truncation error to the norm of the residual.

INTEGER j,jcycle,jj,jml,jpost,jpre,mem,nf,ngrid,nn,irho(NG),

irhs(NG) ,itau(NG) ,itemp(NG),iu(NG) ,maloc
DOUBLE PRECISION res,trerr,z,anorm2

COMMON /memory/ z(MEMLEN) ,mem Storage for grid functions is allocated by maloc

mem=0 from array z.

nn=n/2+1

ngrid=NG-1

irho(ngrid)=maloc(nn**2) Allocate storage for r.h.s. on grid NG — 1,

call rstrct(z(irho(ngrid)),u,nn) and fill it by restricting from the fine grid.

if (nn.gt.3) then Similarly allocate storage and fill r.h.s. on all
nn=nn/2+1 coarse grids.

ngrid=ngrid-1
irho(ngrid)=maloc (nn**2)
call rstrct(z(irho(ngrid)),z(irho(ngrid+1)),nn)
goto 1
endif
nn=3
iu(1)=maloc (nn**2)
irhs(1)=maloc (nn**2)
itau(1l)=maloc (nn**2)
itemp(1)=maloc(nn**2)

call slvsm2(z(iu(1)),z(irho(1))) Initial solution on coarsest grid.

ngrid=NG

do 16 j=2,ngrid Nested iteration loop.
nn=2*nn-1

iu(j)=maloc(nn**2)
irhs(j)=maloc(nn**2)
itau(j)=maloc (nn**2)
itemp(j)=maloc(nn**2)
call interp(z(iu(j)),z(iu(j-1)),nn) Interpolate from coarse grid to next finer grid.
if (j.ne.ngrid) then
call copy(z(irhs(j)),z(irho(j)),nn) Set up r.h.s.

else
call copy(z(irhs(j)),u,nn)
endif
do 15 jcycle=1,maxcyc V-cycle loop.
nf=nn
do 12 jj=j,2,-1 Downward stoke of the V.
do 11 jpre=1,NPRE Pre-smoothing.
call relax2(z(iu(jj)),z(irhs(jj)),nf)
enddo 11
call lop(z(itemp(jj)),z(iu(jj)),nf) Ly ().
nf=nf/2+1
jmi=jj-1
call rstrct(z(itemp(jml)),z(itemp(jj)),nf) RLp (up,).
call rstrct(z(iu(jm1)),z(iu(jj)),nf) Rup,.
call lop(z(itau(jmi1)),z(iu(jml)),nf) L (Ruy) stored temporarily in 7p,.

call matsub(z(itau(jml)),z(itemp(jm1)),z(itau(jm1)),nf) Form 7.
if(jj.eq.j)trerr=ALPHA*anorm2(z(itau(jm1)),nf) Estimate truncation error 7.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

878 Chapter 19. Partial Differential Equations

call rstrct(z(irhs(jml1)),z(irhs(jj)) ,nf) fm.
call matadd(z(irhs(jm1)),z(itau(jm1)),z(irhs(jm1)),nf) fo + Th.

enddo 12
call slvsm2(z(iu(1)),z(irhs(1))) Bottom of V: Solve on coarsest grid.
nf=3
do 14 jj=2,j Upward stroke of V.
jmi=jj-1
call rstrct(z(itemp(jm1)),z(iu(jj)) ,nf) Rup,.
call matsub(z(iu(jm1)),z(itemp(jm1)),z(itemp(jm1)) ,nf) ug — Rup,.
nf=2xnf-1
call interp(z(itau(jj)),z(itemp(jmi)),nf) P(ug —Rup) stored in 7p,.
call matadd(z(iu(jj)),z(itau(jj)),z(iu(jj)) ,nf) Form upe™.
do 13 jpost=1,NPOST Post-smoothing.
call relax2(z(iu(jj)),z(irhs(jj)),nf)
enddo 13
enddo 14

call lop(z(itemp(j)),z(iu(j)),nf) Form residual ||dy]|.
call matsub(z(itemp(j)),z(irhs(j)),z(itemp(j)) ,nf)
res=anorm2(z(itemp(j)) ,nf)

if(res.lt.trerr)goto 2 No more V-cycles needed if residual small
enddo 15 enough.
continue
enddo 16
call copy(u,z(iu(ngrid)),n) Return solution in u.
return

END

SUBROUTINE relax2(u,rhs,n)
INTEGER n
DOUBLE PRECISION rhs(n,n),u(n,n)
Red-black Gauss-Seidel relaxation for equation (19.6.44). The current value of the solution
u(1l:n,1:n) is updated, using the right-hand side function rhs(1:n,1:n).
INTEGER i,ipass,isw,j,jsw
DOUBLE PRECISION foh2,h,h2i,res
h=1.d0/(n-1)
h2i=1.d0/ (h*h)
foh2=-4.d0*h2i
jsw=1
do 13 ipass=1,2 Red and black sweeps.
isw=jsw
do1 j=2,n-1
do 11 i=isw+1,n-1,2
res=h2i*(u(i+1,j)+u(i-1,j)+ui,j+1)+ud,j-1)-
4.d0*u(i,j))+u(di,j)**2-rhs(i,j)
u(i,j)=u(i,j)-res/(foh2+2.d0*u(i,j)) Newton Gauss-Seidel formula.
enddo 11
isw=3-isw
enddo 12
jsw=3-jsw
enddo 13
return
END

SUBROUTINE slvsm2(u,rhs)

DOUBLE PRECISION rhs(3,3),u(3,3)

USES filloO
Solution of equation (19.6.44) on the coarsest grid, where h = % The right-hand side is
input in rhs(1:3,1:3) and the solution is returned in u(1:3,1:3).

DOUBLE PRECISION disc,fact,h

call £i110(u,3)

h=.5d0

fact=2.d0/h**2

disc=sqrt(fact**2+rhs(2,2))

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

19.6 Multigrid Methods for Boundary Value Problems

879

u(2,2)=-rhs(2,2)/(fact+disc)
return
END

SUBROUTINE lop(out,u,n)
INTEGER n
DOUBLE PRECISION out(n,n),u(n,n)

Given u(1:n,1:n), returns Ly, (@) for equation (19.6.44) in out(1:n,1:n).

INTEGER i, j
DOUBLE PRECISION h,h2i
h=1.40/(n-1)
h2i=1.40/ (h*h)
do12 j=2,n-1 Interior points.
do 11 i=2,n-1
out (i, j)=h2ix(u(i+1,j)+u(i-1,j)+u(i,j+1)+u(i,j-1)-
4.d0*u(di,j))+u(d,j)**2

enddo 11
enddo 12
do13 i=1,n Boundary points.

out(i,1)=0.d0
out (i,n)=0.d0
out(1,i)=0.d0
out(n,i)=0.d0

enddo 13

return

END

SUBROUTINE matadd(a,b,c,n)
INTEGER n
DOUBLE PRECISION a(n,n),b(n,n),c(n,n)
Adds a(1:n,1:n) to b(1:n,1:n) and returns result in c(1:n,1:n).
INTEGER i, j
do12 j=1,n
do11 i=1,n
c(i,j)=a(i,j)+b(4,]3)
enddo 11
enddo 12
return
END

SUBROUTINE matsub(a,b,c,n)
INTEGER n
DOUBLE PRECISION a(n,n),b(n,n),c(n,n)

Subtracts b(1:n,1:n) from a(1:n,1:n) and returns result in c(1:n,1:n).

INTEGER 1i,j

do12 j=1,n
do11 i=1,n

c(i,j)=a(i,j)-b(i,])

enddo 11

enddo 12

return

END

DOUBLE PRECISION FUNCTION anorm2(a,n)
INTEGER n
DOUBLE PRECISION a(n,n)
Returns the Euclidean norm of the matrix a(1:n,1:n).
INTEGER 1i,j
DOUBLE PRECISION sum
sum=0.d0
do12 j=1,n
do11 i=1,n

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

880 Chapter 19. Partial Differential Equations

sum=sum+a (i, j)**2
enddo 11
enddo 12
anorm2=sqrt (sum) /n
return
END

CITED REFERENCES AND FURTHER READING:
Brandt, A. 1977, Mathematics of Computation, vol. 31, pp. 333-390. [1]
Hackbusch, W. 1985, Multi-Grid Methods and Applications (New York: Springer-Verlag). [2]

Stuben, K., and Trottenberg, U. 1982, in Multigrid Methods, W. Hackbusch and U. Trottenberg,
eds. (Springer Lecture Notes in Mathematics No. 960) (New York: Springer-Verlag), pp. 1-
176. [3]

Brandt, A. 1982, in Multigrid Methods, W. Hackbusch and U. Trottenberg, eds. (Springer Lecture
Notes in Mathematics No. 960) (New York: Springer-Verlag). [4]

Baker, L. 1991, More C Tools for Scientists and Engineers (New York: McGraw-Hill).

Briggs, W.L. 1987, A Multigrid Tutorial (Philadelphia: S.I.A.M.).

Jespersen, D. 1984, Multigrid Methods for Partial Differential Equations (Washington: Mathe-
matical Association of America).

McCormick, S.F. (ed.) 1988, Multigrid Methods: Theory, Applications, and Supercomputing (New
York: Marcel Dekker).

Hackbusch, W., and Trottenberg, U. (eds.) 1991, Multigrid Methods Il (Boston: Birkhauser).
Wesseling, P. 1992, An Introduction to Multigrid Methods (New York: Wiley).

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

